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a  b  s  t  r  a  c  t

Thermodynamic  and  mechanical  properties  of  the  six  known  phases  in the  La–Mg  phase  diagram,  viz.
LaMg,  LaMg2,  LaMg3, La5Mg41, La2Mg17, and  LaMg12, and  their  elemental  antecedents,  Mg  and  La,  are
computed  with  density  functional  theory  (DFT)  using  the  PBE  and  PBEsol  exchange-correlation  func-
tionals.  Phase  stability  analyses  show  that  both  LaMg2 and  La5Mg41 are  metastable  at  low  temperatures
which  is  consistent  with  experiments  and  vibrational  spectra.  We  generalize  an  existing  approach  for
computing  the  crystallographic  dependence  of  Young’s  modulus  and  Poisson’s  ratio,  which  is  presently
eywords:
a–Mg compounds
hermodynamics
lasticity
hermal expansion

limited  to  cubic  systems,  to  address  any  space  group  symmetry  using  0 K  elasticity  tensor  components
(Cij)  from  DFT.  Isothermal  and  isentropic  Cij(T)  are  computed  with  the  quasiharmonic  approximation
(QHA)  as are  the  linear  thermal  expansion  of  the  cubic  compounds,  the  average  linear  thermal  expansion
for the  non-cubic  compounds,  the  bulk  modulus,  and  the  constant  pressure  heat  capacity.  A  critical  com-
parison  of theoretical  results  from  the  PBE  and  PBEsol  functionals  is  made  with  available  experimental
honon, First-principles calculations data.

. Introduction

Six known La–Mg compounds with cubic, hexagonal, tetrag-
nal, and orthorhombic space group symmetries form through
ombination of Mg  and La, two hexagonal metals. The La–Mg
ompounds, viz., LaMg, LaMg2, LaMg3, La5Mg41, La2Mg17, LaMg12,
isplay a rich variety of thermodynamic and mechanical prop-
rties. For example, some of the La–Mg compounds have been
dentified as strengthening phases in Mg  alloys [1],  while others
re potential hydrogen storage materials and hydride anodes for
i/MH (MH  = metal hydride) batteries. Of particular interest are

heir oxidation resistance, high temperature ductility, and low tem-
erature superconductivity [2,3]. Some of the La–Mg compounds
ave a catalytic effect on hydrogen absorption and desorption in
arious materials [4–13]. Other applications include components
f switchable or tunable mirrors [14]. Lanthanum has been used as
n additive to various Mg  alloys (currently of interest to transporta-
ion industries as light weight replacement materials) in studies

f creep resistance, strength enhancement, casting porosity, and
orrosion resistance [15–21].  Gaps in our knowledge of thermo-
ynamic and mechanical (e.g. elastic) properties of the La–Mg
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compounds remain despite significant prior experimental effort.
Much of this effort is a consequence of their intriguing properties.

Considerable attention has been directed toward generating
an accurate La–Mg phase diagram with experimental methods
[22–25]. Guo and Du [24] provided a history of La–Mg phase dia-
gram development which appears to have begun with the work
of Canneri [25] in 1931. Nayeb-Hashemi and Clark [23] described
five compounds (LaMg, LaMg2, LaMg3, La2Mg17 and LaMg12) in the
La–Mg phase diagram. A refinement to the phase diagram was sub-
sequently published by Okamoto [26]. A sixth compound, La5Mg41,
was  reported by Giovannini et al. [27], but this does not (as of
yet) appear in any La–Mg phase diagram. Of these six compounds,
it is only LaMg12 for which a definitive (fully occupied) structure
remains in question. A more recent assessment of the La–Mg phase
diagram may  be found in Berche et al. [28].

First-principles density functional theory (DFT) has been used
to explore a small number of properties of various La- and Mg-
containing compounds in Refs. [2,29–34]. Future alloy designs from
computational thermodynamics via the CALPHAD approach [35]
will likely rely upon DFT-predicted properties in the absence of
experimental data [36–39]:  careful validation of these proper-
ties against relevant experimental data is critical. At the present

time, a comprehensive DFT investigation of thermodynamic
and mechanical properties of the six known La-Mg compounds
is unavailable. Vibrational and fundamental thermodynamic
property data, such as the temperature dependence of the linear

dx.doi.org/10.1016/j.jallcom.2011.09.085
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hermal expansion, ˛L(T), and the constant pressure heat capacity,
p(T), is sparse, and there are only two DFT studies of the mechani-
al properties of these materials that could be located in the extant
iterature [33,40].

In this article, we present a comprehensive first-principles
FT investigation of thermodynamic and mechanical properties
f the six known La–Mg compounds along with their elemental
ntecedents Mg  and La. The goal of our study was two-fold: to pro-
ide properties of the La–Mg compounds that cannot readily be
ocated in the literature, and to demonstrate the versatility of DFT
or material property predictions. We  compute lattice constants,
nthalpies of formation and phase stability, and the 0 K (single
rystal) elasticity tensor components, Cij, using DFT within the
erdew–Burke–Ernzerhof (PBE) and PBEsol (PBE solid) exchange-
orrelation functionals. Elastic anisotropy is investigated (PBE only)
ith computed Young’s modulus and Poisson’s ratio surfaces which

re color contours showing crystallographic dependence of these
mportant mechanical properties. We  compare results for the
omputed linear thermal expansion, ˛L(T), for the cubic La–Mg
ompounds, the average linear thermal expansion, ˛∗

L(T), for the
on-cubic La–Mg compounds, the isothermal bulk modulus, B(T),
nd the constant pressure heat capacity, Cp(T), from the PBE and
he PBEsol functionals. Anharmonicity due to thermal expansion is
ddressed with the quasiharmonic approximation (QHA). The QHA
ithin the PBE is also used to compute both the CT

ij (T) (isothermal

lasticity tensor components) and CS
ij (T) (isentropic elasticity ten-

or components) for each compound. Several fully occupied LaMg12
tructures have been proposed in the literature. We  show that the
lectronic energies of two of these LaMg12 structures, viz., a fully
ccupied LaMg12 Immm  orthorhombic structure with a giant unit
ell, and that with the ThMn12-type I4/mmm  structure are very
lose. We  note that thermal expansion and heat capacity are critical
nputs to models of a wide variety of physical phenomena. Exam-
les include material models of strain-induced phase transitions

n high strength steels (e.g. transformation induced plasticity) that
iberate heat, and models of battery and hydrogen storage propul-
ion systems [41–47].  These quantities are often assumed to be
onstants, or values used in models are best guesses since experi-
ental measurements from room temperature to melting are often

ifficult or non-existent. The paucity of experimental data for the
a–Mg phases provided motivation for computing properties with
oth the PBE and PBEsol functionals.

. Structures and known properties

The La–Mg compounds are metals, and bonding has been
ttributed to electrons in the Mg  3s and 2p and La 5d and 4f shells
32]. Cohesive energies decrease with increasing Mg  concentration
32]. Stability ranges of the La–Mg compounds were discussed in
e Negri et al. [48] and Berche et al. [28].

LaMg crystallizes in the Pm-3m space group (#221) and has
he cP2-CsCl-type structure with a = 3.97 Å [49] (reported lattice
onstants are assumed to be room temperature values). Buschow
50] observed that LaMg (with a Mg  mole fraction of xMg = 0.5) is a
auli paramagnet. Morishita et al. [51] identified a superconduct-
ng phase transition at 5.9 K from measurements of Cp(T): this is
pproximately 1 K above that in elemental La. LaMg2 (xMg = 0.667)
as the cF24-MgCu2 structure with the Fd-3m space group (#227)
nd a = 8.806 Å [52]. Single crystal data was  reported by Bel-
acem et al. [53]. Raghavan [54] discussed the stability of LaMg2
t 673 K. Nayeb-Hashemi and Clark [23] suggested that LaMg2

orms by a peritectic reaction (liquid + LaMg3 ↔ LaMg2) at 998 K
nd decomposes by a eutectoid reaction (LaMg2 ↔ LaMg + LaMg3)
t 1048 K. LaMg3 (xMg = 0.75) has the cF16-BiF3 structure with space
roup Fm-3m (#225) and lattice constant a = 7.51 Å [52]. It has
ompounds 512 (2012) 296– 310 297

been shown to absorb hydrogen to 4 wt.% at 300 ◦C [6].  Buschow
found that LaMg3 is a Pauli paramagnet [55] and Yamamoto
et al. [56] observed that the LaMg3 valence band consists primar-
ily of free electron gas-like Mg  electrons with strongly localized
4f electrons from La. LaMg3 has a narrow composition range
at high temperatures [57]. The La5Mg41 structure (xMg = 0.891),
which was  first reported by Giovannini et al. [27], is isostruc-
tural with tI92-Ce5Mg41 [58] and has the tetragonal space group
I4/m (#87, a = b = 14.822 Å, c = 10.468 Å). According to De Negri
et al. [48], La5Mg41 decomposes eutectoidaly below 873 K. The
La2Mg17 (xMg = 0.895) phase is hexagonal (P63/mmc, a = b = 10.36 Å,
c = 10.24 Å) with the hP38-Th2Ni17 structure [59] and its composi-
tion is very close to that of La5Mg41. It has been investigated as
a potential hydride electrode material [13,60], hydrogen storage
material [12,61,62],  and was  recently identified as a precipitate in
Mg–Zn–Y–La alloys [1].  Within 543–563 K, LaMg12 and La2Mg17
under hydrogen decompose to LaH3 and MgH2 [63]. As the most
Mg-rich compound in the La–Mg phase diagram (xMg = 0.923),
LaMg12 has attracted substantial interest as a potential hydrogen
storage material. A fully occupied structure for LaMg12, however,
remains a topic of ongoing research with two  LaMg12 polymorphs
thought to be similar to experimentally-confirmed structures of
CeMg12. These are: an anti-phase, body-centered orthorhombic
structure, oI338-Immm (#71), which is isotructural with Immm
CeMg12, first reported by Johnson et al. [64]; and a tetragonal
tI26-I4/mmm (#139) structure based upon ThMn12 with lattice
parameters a = b = 10.33 Å, c = 5.96 Å (note that experimental data
are reported for CeMg12) [65]. In a study of hydrogen storage
in LaMg12, Pal [66] identified a tetragonal structure with lattice
parameters a = 10.34 ± 0.05 Å and c = 71.53 ± 0.05 Å but no addi-
tional structural information was  provided. It is interesting to
note that the Immm  structure of CeMg12 proposed by Johnson
et al. [64] could not be confirmed by Deportes et al. [67]. How-
ever, Sun et al. [63,68] found that a LaMg12 Immm structure
with lattice constants a = 10.34420 ± 0003 Å, b = 10.36520 ± 0015 Å,
and c = 77.58620 ± 0014 Å was the best fit to their XRD data.
They observed that LaMg12 has a composition range rather
than a well-defined stoichiometry, and nuclear coordinates of a
fully occupied Immm  cell were therefore not provided. Interac-
tion with hydrogen induces phase decomposition of LaMg12 to
La2Mg17, which has greater thermodynamic stability. Denys et al.
[69] identified an orthorhombic (Immm)  LaMg10.85 with lattice
parameters a = 10.3391(5) Å, b = 10.3554(5) Å, c = 77.484(4) Å. This
non-stoichiometric structure is similar to that for CeMg12 reported
by Johnson et al. [64] where the cell is constructed with 13-ThMn12-
type tetragonal units stacked along [0 0 1]. Units are “slipped” by
0.5a at z = 0.1345; 1/2 − z; 1/2 + z and 1 − z) along planes (or “nets”)
of Mg  sites. This cell structure was also suggested by Giovanni
et al. [27]. Interestingly, the hydrogen storage capacity of LaMg12
alloy has been reported to reach 3.7–5.5 wt.% [66]. Using rapid
solidification for grain size refinement in hydrogen storage, Pole-
taev et al. [70] recently identified a new La–Mg phase, viz., an
hexagonal TbCu7 structure, along with the previously reported
ThMn12 and LaMg11 (orthorhombic) phases. Relevant structural
details for all materials investigated in this study are summarized
in Table 1.

3. Computational methodology

All calculations in this study are conducted with the Vienna
Ab Initio Simulation Package (VASP), a plane wave DFT code

[71–73]. The electron–ion interactions are described by the
full potential projector augmented wave (PAW) method [74].
Exchange-correlation is treated within the generalized gradient
approximation GGA-PBE [75]. To explore predictions from another
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Table 1
Space group symmetries and VASP computational parameters for electronic energies and phonons. 500 eV plane wave cut-off energy used for all calculations. Atomic
displacements in phonon calculations: ±0.02 Å. xMg = mole fraction of Mg.  S.U. = symmetry-unique.

Material (xMg) Pearson
symbol

Space group
(No.)

Structure type Electronic �k-mesh
(#S.U. �k-points)

Phonon Supercell
(# atoms)

Phonon �k-mesh
(#S.U. �k-points)

Mg  hP2 P63/mmc – 25 × 25 × 25 4 × 4 × 2 6 × 6 × 4
(194)  (845) (64) (15)

La  hP4 P63/mmc – 21 × 21 × 7 3 × 3 × 1 5 × 5 × 5
(194) (192) (36) (15)

LaMg  (0.5) cP2 Pm-3m CsCl 25 × 25 × 25 3 × 3 × 3 5 × 5 × 5
(221) (455) (54) (10)

LaMg2 (0.67) cF24 Fd-3m MgCu2 25 × 25 × 25 2 × 2 × 2 5 × 5 × 5
(227)  (455) (192) (4)

LaMg3 (0.75) cF16 Fm-3m BiF3 25 × 25 × 25 2 × 2 × 2 5 × 5 × 5
(225) (455) (128) (4)

La5Mg41 (0.891) tI92 I4/m Ce5Mg41 9 × 9 × 9 1 × 1 × 1 3 × 3 × 5
(87) (105) (92) (9)

La2Mg17 (0.895) hP38 P63/mmc Th2Ni17 13 × 13 × 13 1 × 1 × 1 4 × 4 × 4
(194)  (147) (38) (12)
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LaMg12 (0.92) tI26 I4/mmm ThMn12

(139)

xchange-correlation functional, selected properties are also
omputed in the GGA-PBEsol [76]. The strengths and weaknesses
f different local and semi-local functionals for various materi-
ls and their properties have been assessed in several studies.
or example, lattice parameters and bulk moduli for selected
etals, semiconductors and insulators as obtained from LDA,

BE, and PBEsol and other functionals were compared to exper-
mental data in [77–80].  Consistently, LDA tends to strongly
nderestimate and PBE tends to overestimate lattice parame-
ers, respectively. Alternatively, LDA tends to overestimate, while
BE underestimates, respectively, binding energies, elastic proper-
ies (e.g. bulk moduli), surface energies, and phonon frequencies.
lthough for some materials LDA or PBE still exhibit best agree-
ent with experiment, PBEsol tends to improve the overall

greement to these experimental data on bulk properties due
o reduced dependence of the enhancement factors on the gra-
ient [76]. The PBEsol is, however, less accurate than LDA for
tomic properties as reflected in computed atomization energies
for example).

The core configurations for the La and Mg  PAW potentials are
Kr]4d10 and [He]2s2, respectively. Structural parameters for the
hermodynamic and mechanical property calculations are opti-

ized by simultaneously minimizing all atomic forces and stress
ensor components via a conjugate gradient method. Three succes-
ive full-cell optimizations are conducted to ensure convergence
f cell energies and structural parameters. Total energies are cal-
ulated using the fully relaxed structures by integration over a
onkhorst-Pack mesh of k-points in the Brillouin zone with the

inear tetrahedron method with Blöchl corrections. The plane wave
utoff energy for all calculations is 500 eV. In all cases, the total
nergy is converged to 10−7 eV/cell and the force components are
elaxed to at least 10−4 eV/Å.

Phonon spectra for the solids and associated thermodynamic
unctions are computed by means of the supercell (direct)
pproach to lattice dynamics with VASP as the computational
ngine [81]. The cell size in each phonon calculation is cho-
en such that computed force constants at its boundaries are
egligible. For some La–Mg compounds, the conventional cell is

ound to meet these criteria, whereas supercells are required

or the others. Additional details on the supercell method

ay  be found in [82,83]. The cells used in the phonon cal-
ulations along with VASP �k -point meshes are detailed in
able 1.
17 × 17 × 17 1 × 1 × 2 5 × 5 × 5
(405) (52) (18)

4. Quasiharmonic approximation of thermodynamics

Central to the QHA is minimization of the Helmholtz free energy,
F(V,T), with respect to variations of all internal degrees of freedom at
several fixed cell volumes [84]. In practice, the QHA has been found
to work best for many solids up to some temperature between the
Debye temperature and the melting point [30,85–88].  Within the
QHA, F(V,T) is usually expressed as,

F (V, T) = E (V) + Felec (V, T) + Fphonon (V, T) (1)

where E(V) is the 0 K static energy excluding any thermal contri-
butions, with the first-principles predicted E(V) data points fit by
the Birch–Murnaghan (B–M) equation-of-state (EOS) [89], Felec(V,T)
the thermal electronic free energy, and Fphonon(V,T) the vibra-
tional Helmholtz free energy (for additional details see [86,88,90]).
Remaining thermodynamic properties, such as, entropy S, enthalpy
H, isothermal bulk modulus B(T), volume thermal expansion ˛V,
constant volume (or isochoric) heat capacity CV, and constant pres-
sure heat capacity,

Cp(T) = CV(T) + ˛2
V(V, T)TB(T)V0(T) (2)

are obtained from the QHA-determined F(V,T). Here, Cv(T) is the
constant volume heat capacity (from phonon calculations), T is
temperature, and V0(T) is the equilibrium volume at temperature
T.

5. Anisotropic properties: Thermal expansion and elasticity

5.1. Thermal expansion

For single crystals, some properties such as thermal expansion
and the elasticity tensor components, Cij, are anisotropic. Since the
second-order strain tensor, εij, is symmetric, it can be expressed in
terms of six independent components εi,

ε =
(

ε11 ε12 ε13
ε21 ε22 ε23

)
=
(

ε1 ε6/2 ε5/2
ε6/2 ε2 ε4/2

)
(3)
ε31 ε32 ε33 ε5/2 ε4/2 ε3

Here, the reduced representation in terms of the εi is rep-
resented in matrix form [91]. With increasing temperature, six
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ndependent linear thermal expansion components, ˛ij (or ˛i in
educed form), can be derived from the corresponding εij (or �i),

ij (T) =
(

∂εij (T)
∂T

)∣∣∣∣
P

(4)

rystal symmetry affords a reduction in the number of independent
oefficients of ˛ij (T). The εij (T) are written in terms of the lattice
onstants, ai(T), obtained from the QHA. The values of ai(T) are first
alculated at several cell volumes. These results are interpolated
via cubic spline interpolation) to obtain values of ai for each V0(T)
t selected temperatures from 0 K up to the melting point. For the
exagonal and tetragonal compounds, we computed the average
hermal expansion, ˛∗

L , to facilitate comparison with experimental
ata. This is given by,

∗
L = ˛‖

L + 2˛⊥
L

3
= ˛V

3
(5)

here the two independent components of ˛ij(T) are ˛‖
L (along the

rincipal axis, i.e. the c-direction, or ˛33) and ˛⊥
L (normal to the

rincipal axis or ˛11) for hexagonal and tetragonal symmetries. For
he cubic structures, we  write the single linear thermal expansion
omponent as ˛L.

.2. Elasticity tensor components Cij at 0 K

Aside from their significance as fundamental (intrinsic)
echanical properties of solids, the components of the elasticity

ensor, Cij (arrived at by exploiting the symmetry of the fourth-
rder tensor Cijkl) have been linked to important thermodynamic
roperties. For example, Fine et al. [92] found that the melting tem-
erature of certain cubic intermetallic compounds correlates with
he value of C11. A correlation was also found between the Cij and

elting temperature of hexagonal and tetragonal compounds. A
uantitative relationship between the Young’s modulus (a poly-
rystalline estimate of which can be derived from the Cij) and the
hermodynamics of hydrogen-absorption in Mg films was recently
emonstrated in [93]. The values of Cij are also important in stud-

es of material defects, such as dislocations [94]. Components of the
 K elasticity tensor, Cij, are computed using the stress-based least-
quares fitting method of Le Page and Saxe [95,96]. This method
ses the stresses computed in the VASP code as inputs to a least-
quares fit of the unknowns appearing in the linear stress–strain
elationships for a selected sequence of symmetry-unique strains.
or the La–Mg compounds addressed herein, the unknowns are
he three, five, six and nine independent Cij for cubic, hexagonal,
etragonal, and orthorhombic symmetries, respectively. The mod-
li are computed from the first derivatives of the stresses, rather
han from the second derivatives of the total energy, with respect to
train. This method avoids the numerical difficulties often encoun-
ered with evaluations of the latter and reduces the number of VASP
alculations, and all Cij are computed simultaneously rather than as
ndependent sums of Cij. The calculated values of Cij are sensitive to

he �k -point mesh, and this required a series of ancillary calculations
o test �k -point convergence of all Cij. It was determined that the
pplication of four successive strains, viz., 0.4%, 0.5% 0.6%, and 0.7%
as adequate to obtain ≤1% statistical error in each computed Cij.

he quality of the least squares fit, as gauged by the computed least

quares residual, is ≤1% for all Cij calculations. The small residuals
re consistent with negligible anharmonic effects in the computed
ij due to the applied strains. We  also compute polycrystalline bulk,
hear, and Young’s moduli based upon the Hill criterion [97].
ompounds 512 (2012) 296– 310 299

5.3. Elasticity tensor components at high temperatures Cij(T)

To calculate the isothermal elasticity tensor components, CT
ij (T),

we  first compute the 0 K Cij at selected volumes above and below
the equilibrium volume, V0 (T), from the QHA. Using V0 (T), the
CT

ij (T) are computed via interpolation from the Cij (V) wherein the
volume dependence is eliminated. Here, the kinetic energy and
the fluctuations of microscopic stress tensors [98] are ignored. The
measured elasticity tensor components at high temperatures (e.g.
using the resonance method) are usually isentropic since the sys-
tem is adiabatic due to the faster speed of elastic waves relative to
heat diffusion [99,100]. The isentropic elasticity tensor is defined
as CS

ij (T). From Davies [101] the CS
ij (T) can be written in terms of

the CT
ij (T) as

CS
ij (T) = CT

ij (T) + TV�i�j

CV
(6)

where

�i = −
6∑

j=1

(
∂�i

∂εj

)
T

(
∂εj

∂T

)
�

= −
6∑

j=1

˛jC
T
ij (T) (7)

The reduced forms of stress, strain, and thermal expansion,
denoted by �i, εj, and ˛j follow the definition in Eq. (3).

5.4. Elastic anisotropy

Elastic properties of anisotropic crystalline materials often
include single values of the Young’s modulus or Poisson’s ratio.
Both properties, however, are dependent upon the direction of
measurement within a crystal lattice. On a practical note, elastic
anisotropy has been related to cracking near grain boundaries (in
the form of microcracks and delamination) in polycrystalline mate-
rials [102,103].  A useful approach to examining elastic anisotropy
is with mathematically-derived surfaces that change their shape
from one crystallographic direction to the next. The extent to which
the surfaces change shape is indicative of anisotropy. An existing
approach for computing Young’s modulus and Poisson’s ratio sur-
faces was  presented by Zhang et al. [104,105].  Their technique,
however, is limited to cubic systems. In the present study, we
extend the Zhang et al. [104,105] methodology to compute elastic
anisotropy of hexagonal and tetragonal space group symmetries.
For the La–Mg phases of interest here, we compute contours of the
Young’s modulus and Poisson’s ratio as a function of orientation
with respect to the crystal lattice. This requires calculation of the
fourth-order elastic compliance tensor, Sijkl, which is determined
via inversion of the 0 K second-order elasticity tensor [104,105],
Cij.

Following Zhang et al. [104,105],  the Young’s modulus, E(h  k l),
and average Poisson ratio, �(h k l), along a direction normal to the
lattice plane system described with Miller indices (h k l) are given
as

E(hkl) = 1
s′

3333
(8)

�(hkl) = − s′
1133 + s′

2233
2s′

3333
(9)

Here, s′
ijkl are components of the compliance tensor in the new

reference system (the new lattice plane system rotated from the
original one and described with Miller indices (h k l)) written in

fourth-order tensor notation and transformed from the compli-
ances of the crystal, smnop, in the original cubic crystal axes. Hence

s′
ijkl = aimajnakoalpsmnop (10)
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Table 2
Lattice constants a, c (in Å) of Mg and La from the PBE and PBEsol. Numbers in paren-
theses are the VASP-optimized lattice constants based upon electronic energies only,
while numbers not in parentheses were computed with the QHA. Experimental
results are assumed at 298 K.

Mg La

PBE
Å 0  K 298 K 0 K 298 K
a,b 3.21 3.23 3.77 3.78

(3.19) (3.76)
c  5.19 5.23 12.08 12.11

(5.17) (12.06)
PBEsol

Å  0 K 298 K 0 K 298 K
a,b 3.19 3.21 3.65 3.66

(3.16) (3.65)
c 5.17 5.20 11.71 11.73

(5.14) (11.69)
Exp.

a 3.2089a 3.772b

c 5.2101a 12.144b
00 J. Wróbel et al. / Journal of Alloys

here aim, ajn, ako, and alp are the transformation matrices [91]. The
ransformation matrix, art, from the original cubic crystal axes to
he new lattice plane system described with Miller indices (h k l)
an be expressed explicitly in terms of Miller indices of this plane
104,105].

art )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

hl√
h2 + k2

√
h2 + k2 + l2

kl√
h2 + k2

√
h2 + k2 + l2

−

√
h2 + k2√

h2 + k2 + l2

− k√
h2 + k2

h√
h2 + k2

0

h√
h2 + k2 + l2

k√
h2 + k2 + l2

l√
h2 + k2 + l2

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where h, k, l are the direction cosines.
In Zhang et al. [104,105],  expressions for E(h k l) and �(h k l)

re reduced for cubic structures to a simple function of direction
osines. In the method presented here, the transformation matrix,
rt, is calculated for each orientation (chosen from a uniformly dis-
ributed set of directions) and E(h k l) and �(h k l) are obtained from
qs. (8)–(11).  The original compliance tensor smnop is not limited to
ubic space group symmetry.

. Results and discussion

.1. LaMg12 structures

The fully occupied Immm  LaMg12 structure is constructed fol-
owing the recipe of Johnson et al. for CeMg12 [64]. This consists of
3-tetragonal ThMn12-type cells [69] with a slip of 0.5a occurring
t z = 4/26, 10/26, 17/26, and 23/26 (see supplementary materials).
e have compared the computed X-ray powder patterns for the

mmm  structure with the experimental powder patterns in Pal
66] and Sun [68] and found reasonable agreement. For compar-
son with the ThMn12 and Immm  LaMg12 structures, a smaller
mmn (#59) LaMg12 cell, which has not been identified in the lit-
rature, is constructed from the Immm  cell with shifts of 0.5a at

 = 4/26, 10/26 (see supplementary materials).  The VASP total ener-
ies of the Immm  and Pmmn  structures are 0.006 and 0.001 eV/f.u.
ower (i.e. more negative), respectively, than that of the ThMn12-
ype I4/mmm structure, which is energetically very close. While
ibrational corrections could modify this observation, phonon cal-
ulations on the Immm  structure are impractical due to the large
umber of independent atoms in the unit cell. Hence, we use the
aMg12 I4/mmm  structure for all subsequent calculations.

.2. Lattice constants and vibrational spectra

Calculated lattice constants from the QHA at 0 K and 298 K, along
ith experimental (room temperature) values, are listed in Table 2

hcp Mg,  dhcp �-La) and Table 3 (La–Mg compounds). In general,
98 K lattice constants from the PBEsol are smaller than those from
he PBE, as expected. For Mg  the 298K PBEsol results, and for La the
98 K PBE results, tend to be in closer accord with experimental
alues (see Table 2). The fact that PBE does not overestimate lat-
ice parameters for Lanthanum (as one would expect from general
rends) may  be attributed to an overestimation of the contribu-
ion of f-electrons to the bonding by density functional approaches.
onsistent with these results for the pure elements, PBEsol is
n increasingly better agreement with experiment as Mg  content
ncreases for the 298 K lattice parameters of the La–Mg compounds.
or LaMg, however, the PBE functional is still superior. The lattice
arameters of all other compounds are better described by PBEsol,
a Ref. [106].
b Ref. [107].

with the c lattice parameter of La2Mg17 being the only exception
(note that experimental data are not available for LaMg12).

Computed vibrational spectra for the fully VASP-optimized
(PBE) LaMg, LaMg2, LaMg3, La2Mg17, La5Mg41, and LaMg12 struc-
tures are shown in the supplementary material. No imaginary
phonon modes are noted.

6.3. Thermal expansion

Fig. 1a and b compare the computed ˛∗
L from Eq. (5) for Mg and La

with experimental data [109,110].  Agreement between experiment
and the PBEsol result for Mg  in Fig. 1a is superior over the entire
temperature range considered compared to the PBE. From Fig. 1b, a
similar conclusion cannot be reached for La due to the dhcp �/fcc �
phase transition at 533 K [111]. This is denoted in the experimental
data by the jump at ∼600 K, beyond which can be seen a substantial
disagreement with the PBE and the PBEsol results. A more formal
theoretical treatment of the La phase transition is required in order
to accurately predict thermal expansion beyond ∼600 K.

Fig. 2 compares ˛L for the cubic La–Mg compounds computed
with the PBE and the PBEsol. As temperature increases, we note
that (˛L)PBE > (˛L)PBEsol. From the PBE, we  find ˛LaMg2

L > ˛LaMg3
L >

˛LaMg
L . A similar trend does not result from the PBEsol since the ˛L

for LaMg2 and LaMg3 are nearly equivalent below ∼410 K: beyond
this point, ˛LaMg2

L > ˛LaMg3
L . Fig. 3 compares the ˛∗

L from the PBE
and PBEsol for the three non-cubic La–Mg compounds. From the
PBE, we  find (˛∗

L)LaMg12 > (˛∗
L)La5Mg41 > (˛∗

L)La2Mg17 . Again a similar
trend does not apply across the full temperature range consid-
ered in Fig. 3 for results from the PBEsol functional. The predicted
˛∗

L for La5Mg41 and La2Mg17 from PBEsol are nearly identical up
to ∼300 K, beyond which (˛∗

L)LaMg12 > (˛∗
L)La5Mg41 > (˛∗

L)La2Mg17 . In
general, both functionals predict that LaMg12, the compound with
the greatest xMg, has the highest ˛∗

L of all the La–Mg compounds.

6.4. Bulk modulus

Fig. 4 compares the isothermal B(T) computed from the PBE and
the PBEsol functionals for Mg  and La. Experimental data for Mg  from
Rao [112] shows favorable agreement with the PBEsol result up to

300 K. No experimental B(T) data could be located for La other than
the room temperature value of 24.3 GPa which is noted by the filled
triangle in Fig. 4 [113]. Two  values from other exchange correlation
functionals are also included in Fig. 4 (filled square LDA, and filled
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Table 3
Lattice constants a, c (in Å) of the La–Mg compounds at 0 K and 298 K, from the QHA with the PBE and PBEsol functionals. Numbers in parentheses are the VASP-optimized
lattice  constants based upon electronic energies. Experimental results are assumed at 298 K.

LaMg LaMg2 LaMg3 La5Mg41 La2Mg17 LaMg12

PBE
Å 0 K 298 K 0 K 298 K 0 K 298 K 0 K 298 K 0 K 298 K 0 K 298 K
a,b 3.97 3.98 8.80 8.84 7.53 7.56 14.84 14.92 10.39 10.44 10.38 10.44

(3.95) (8.78) (7.50) (14.88) (10.36) (10.34)
c 10.48 10.54 10.20 10.24 5.94 5.97

(10.44) (10.16) (5.92)
PBEsol

Å  0 K 298 K 0 K 298 K 0 K 298 K 0 K 298 K 0 K 298 K 0 K 298 K
a,b  3.91 3.92 8.70 8.73 7.45 7.47 14.73 14.79 10.31 10.36 10.30 10.36

(3.90)  (8.68) (7.43) (14.68) (10.28) (10.27)
c  10.40 10.45 10.12 10.17 5.90 5.93

(10.36) (10.09) (5.87)
a,b 3.97a 8.806b 7.51b 14.822c 10.36d, 10.35e 10.33f

c 10.468c 10.24d, 10.25e 5.96f

a Ref. [49].
b Ref. [52].
c Ref. [27].
d Ref. [59].
e Ref. [108].
f Ref. [65] lattice constants of CeMg12 (ThMn12) which is a reference structure for LaMg12.

Fig. 1. Temperature (K) variation of ˛∗
L

(×10−6/K) for (a) hcp Mg,  (b) dhcp La. Exper-
imental (Exp) data for Mg  and La from Refs. [109] and [110], respectively. Note that
the  jump in the experimental data in (b) corresponds to the dhcp �/fcc � phase
transition (∼600 K) in La which is not accounted for in the calculations.

Fig. 2. Temperature (K) variation of ˛L (×10−6/K) for the cubic La–Mg compounds
from the PBE and the PBEsol functionals.

Fig. 3. Temperature (K) variation of ˛∗
L

(×10−6/K) for the non-cubic La–Mg com-
pounds from the PBE and the PBEsol functionals.
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Fig. 4. Comparison of B (GPa) vs. T (K) from the PBE and the PBEsol functionals for
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Fig. 6. Comparison of B (GPa) vs. T (K) from the PBE and the PBEsol functionals for
La5Mg41, La2Mg17, LaMg12.
g  and La. Experimental data for Mg  and La from Refs. [112] and [113], respectively.
dditional theoretical values for La taken from Ref. [114]. Note: PW = Perdew-Wang

115].

riangle GGA). For much of the temperature range considered in
ig. 4, the B(T) for Mg  exceeds that of La.

Fig. 5 compares the B(T) for the cubic La–Mg compounds com-
uted with the PBE and the PBEsol. For both functionals, LaMg3
with the largest xMg of the cubic materials) is predicted to have
he greatest B(T), while B(T)LaMg2

> B(T)LaMg at lower T. This trend
everses at higher T (∼325 K).

Fig. 6 shows the B(T) for the non-cubic La–Mg compounds com-
uted with the PBE and the PBEsol. The PBE predicts the B(T) for
aMg12 to be smaller than the B(T) computed for La5Mg41 and
a2Mg17. Minimal differences are noted between La5Mg41 and
a2Mg12 from the PBEsol for the range of T considered in the figure,
hile a larger variation is suggested by the PBE.

.5. Heat capacity
Fig. 7a and b show the Cp (T) from the QHA for Mg  and La, respec-
ively, compared with experiment [116]. We  note that both the PBE

ig. 5. Comparison of B (GPa) vs. T (K) from the PBE and the PBEsol functionals for
aMg, LaMg2, and LaMg3.

Fig. 7. Temperature (K) variation of Cp (J K−1 mol−1) from the PBE and the PBEsol
functionals for (a) hcp Mg,  (b) dhcp La. Experimental (Exp) data for Mg and La from
Ref. [116]. Note that the jump in the experimental data in (b) corresponds to the
dhcp/fcc phase transition (∼600 K) in La which is not addressed in the calculations.
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Fig. 8. Comparison on Cp (J K−1 mol−1) vs. T (K) from the PBE and the PBEsol func-
tionals for (a) LaMg, (b) LaMg2, (c) LaMg3. Experimental data in (a) and (c) from Refs.
[51] and [56], respectively.

Fig. 9. Comparison on C (J K−1 mol−1) vs. T (K) from the PBE and the PBEsol func-
p

tionals for La5Mg41, La2Mg17, LaMg12..

and the PBEsol yield good agreement with experimental data for
Mg.  As expected, the experimental Cp (T) data for La shows a jump
at ∼600 K corresponding to the dhcp �/fcc � phase transition. Again,
this is not captured in the theoretical framework of the QHA.

Fig. 8a–c show the predicted Cp (T) for the cubic La–Mg com-
pounds. The PBEsol results are in closer accord with experimental
data from the literature for LaMg [51] and LaMg3 [56]. However, all
three figures suggest only very minimal differences between the
PBE and the PBEsol.

Fig. 9 compares the predicted Cp (T) for the non-cubic La–Mg
compounds. Deviations between the three materials are most
notable at higher temperature (∼T > 400 K) with the Cp (T) for
LaMg12 exceeding that for La5Mg41 and La2Mg17.

6.6. Enthalpy of formation and phase stability

Table 4 lists the computed enthalpies of formation for each
La–Mg compound with the reference states being dhcp La and
hcp Mg.  Note that �H0 and �H298 are the enthalpies of forma-
tion corresponding to 0 K (including zero point energy), and 298 K,
respectively. Also listed in Table 4 are enthalpies of formation from
other calculations (�Hcalc) and experiments (�Hexp) as well as
stability ranges for all materials considered. Results from other cal-
culations, for which other GGA functionals are used and no zero
point and finite temperature effects are included, tend to be closer
to the �Hstatic from the PBE in the present study with the single
exception being LaMg12. The spread of previously calculated for-
mation enthalpies as well as those obtained here from PBE and
PBEsol is much smaller than the spread between available experi-
mental data [25,118,119]. Results from the PBE for �H298 tend to
be closer to the experimental values of Refs. [25] and [118] (only for
LaMg12 is PBEsol closer), whereas experimental data of Ref. [119]
deviate considerably from computed and other experimental data.

In general, the computed enthalpies of formation at 0 K and
298 K in Table 4 suggest greater thermodynamic stability from the
PBE than that from PBEsol for the La–Mg compounds, but no con-
clusions can be drawn without a phase stability analysis. Fig. 10

investigates phase stability of the La–Mg compounds from PBE-
and PBEsol-computed enthalpies of formation based upon VASP
electronic energies. Two compounds in particular, i.e. LaMg2 and
La5Mg41, do not lie on the convex hull shown in Fig. 10a. This is true
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Table 4
Enthalpies of formation �H0 and �H298 at 0 K and 298 K, respectively, calculated in the PBE (PBEsol) compared with other theoretical calculations (�Hcalc) and experimental
values  (�Hexp). All results are in kJ/mol/atom to facilitate comparisons with experimental data. Trange = range of stability (K).

LaMg LaMg2 LaMg3 La5Mg41 La2Mg17 LaMg12

�H0 −10.85 −11.66 −12.65 −7.27 −7.33 −5.56
(−8.69) (−10.09) (−12.28) (−8.42) (−6.26) (−4.80)

�H298 −10.95 −11.75 −12.80 −7.34 −7.43 −5.63
(−8.89) (−10.20) (−12.47) (−8.51) (−6.35) (−4.88)

�Hcalc −11.3a −12.2a −13.3a −7.7a

−13.1b −12.0b −9.0b −4.1b

−13.0c −9.6c −4.1c −3.0c

−11.3d −17.3d −7.8d

�Hexp −11.9e −13.5e

−7.1f −2.4f −27.7f −0.7f

−12.1 ± 3.4g −15.8 ± 3.5g −15.7 ± 2.4g −7.8 ± 1.7g −4.9 ± 1.7g

Trange <1018h,i 899–1048h <1071h,j 873–943j,k <945j <913l

998–1053i

a Ref. [32] VASP, GGA, 0K, zero point contribution not included.
b Ref. [117].
c Ref. [24] Miedema model.
d Ref. [118] QUANTUM-ESPRESSO PWscf ab-initio package, GGA, Vanderbilt ultrasoft pseudopotentials.
e Ref. [25] Acid calorimetry (in hydrochloric acid) at 298 K.
f Ref. [119] Acid calorimetry (in hydrochloric acid) at 298 K.
g Ref. [118] metallic calorimetry at 298K (a custom Tian-Calvet calorimeter).
h Ref. [23].
i Ref. [120].

f
a
b
t
l

T
C
(

j Ref. [28].
k Ref. [48].
l Ref. [121].

or both PBE and PBEsol, and details are shown in Fig. 10b  for LaMg2
nd Fig. 10c  for La5Mg41. Since no imaginary phonon modes have

een computed in any of the vibrational spectra (see supplemen-
ary material), both compounds are predicted to be metastable at
ow temperatures. Our results are in agreement with those of Zhang

able 5
alculated PBE (PBEsol) Cij and bulk (B), shear (G) and Young’s (E) moduli based upon VA
E)  moduli are derived from the Hill criterion. All moduli are in GPa.

Mg  La LaMg LaM

C11 60.3 50.2 47.4 58.0
(60.4) (57.7) (48.6) (61.7

C12 28.8 14.8 28.7 25.0
(31.4) (16.7) (30.7) (26.0

C13 21.7 10.2 – – 

(22.0) (8.4) 

C33 66.6 51.8 – – 

(68.4) (62.1) 

C44 15.7 15.1 36.9 22.2
(15.1) (17.7) (39.7) (18.9

C66 – – – – 

B 36.8  24.7 34.9 36.0
(37.8) (27.1) (36.7) (37.9

G  16.9 17.2 21.4 19.8
(16.3) (20.5) (22.1) (18.5

E  44.0 41.9 53.0 49.9
(42.7) (49.9) (54.7) (47.7

Experimental and other theoretical data
C11 63.5a, 58.1b, 67.5c 51.4c 46.7e, 44.7f 58.4
C12 25.9a, 27.6b, 24.8c 17.3c 27.8e, 29.4f 24.9
C13 21.7a, 21.6b, 24.1c 10.4c

C33 66.5a, 64.7b, 72.4c 54.6c

C44 18.4a, 14.2b, 24.0c 13.9c 36.2e, 35.1f 21.8
B 36.9a, 39.2c, 35.5d 25.9c, 24.3d 34.1e, 34.5f 36.0
G 19.3a, 22.8c, 17.4d 16.7c, 14.9d 25.5e, 19.5f 19.7
E 43.5a, 57.3c, 44.4d 41.2c, 38.0d 61.2e, 49.3f 50.1

a Ref. [108] experimental data.
b Ref. [122] VASP/PAW/GGA-PW91 and the strain vs. stress method.
c Ref. [123] VASP/PAW/GGA-PW91 and the strain vs. strain energy method.
d Ref. [124] experimental data.
e Ref. [40] Ab-initio, GGA.
f Ref. [33] Ab-initio, GGA PW91.
g Ref. [29] Ab-initio, GGA PW91.
et al. [30] who  previously predicted low temperature metastability
of LaMg2. However, the La5Mg41 compound was not investigated

in their study.

We may  estimate the temperatures at which LaMg2 and
La5Mg41 become stable by finding the temperature at which the

SP electronic energies (i.e. no QHA). Polycrystalline bulk (B), shear (G), and Young’s

g2 LaMg3 La5Mg41 La2Mg17 LaMg12

 59.3 71.7 74.7 87.1
) (63.2) (77.6) (77.4) (91.4)

 26.5 16.9 21.9 10.2
) (27.9) (19.6) (23.8) (13.1)

– 17.5 16.3 17.8
(19.4) (16.6) (15.6)

– 74.8 81.3 72.1
(80.5) (85.7) (81.2)

 36.6 28.8 25.6 26.5
) (39.5) (31.7) (28.2) (28.1)

– 17.7 – 23.2
(18.6) (23.3)

 37.4 35.8 37.7 37.5
) (39.7) (39.2) (39.5) (39.1)

 26.5 25.7 27.2 28.2
) (28.6) (27.6) (28.8) (30.1)

 64.3 62.1 65.7 67.6
) (69.1) (67.0) (69.6) (71.8)

e 59.2e, 59.1g

e 26.2e, 26.3g

e 36.0e, 35.9g

e 37.2e, 37.2g

e 28.2e, 26.3g

e 67.5e, 63.9g
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Fig. 10. First-principles calculated enthalpies of formation at 0 K for La–Mg com-
pounds (a) together with the zoomed in parts around LaMg2 (b) and La5Mg41 (c).
Clearly LaMg2 and La5Mg41 are inside the convex hull, indicating they are not stable
at  low temperatures with respect to their neighbors. We therefore define them as
metastable phases in the present study.

Fig. 11. Variation of relative Helmholtz free energy, �F,  with T (K) for LaMg2 and

La5Mg41. Stability is predicted at those temperatures for which �F = 0.

relative Helmholtz free energy, �F,  is zero for both compounds,
where LaMg2 is with respect to a mixture of LaMg and LaMg3, and
La5Mg41 is with respect to a mixture of LaMg3 and La2Mg17. This
is accomplished in Fig. 11.  Based upon the PBE, both LaMg2 and
La5Mg41 are stable at temperatures above 223 K and 1285 K, respec-
tively. From the PBEsol, both LaMg2 and La5Mg41 become stable at
temperatures above 634 K and 1200 K, respectively. The phase dia-
gram of Berche et al. [28] indicates that both phases become stable
∼900 K., suggesting that the PBEsol results are in closer accord with
experiments. Omitted in our analysis is the effect of LaMg3 compo-
sition [28]: this may  introduce error in our estimates of LaMg2 and
La5Mg41 phase stability. Despite this, we believe that DFT provides
the correct trends.

6.7. Elasticity tensor components

Table 5 lists the computed elasticity tensor components, Cij,
for the La–Mg compounds from PBE (PBEsol values are in paren-
theses) at 0 K without the effect of the zero point energy. The
polycrystalline bulk (B), shear (G), and Young’s (E) moduli are
derived from the computed Cij using the Hill criterion detailed
in Hector et al. [97]. Results from experiments and other ab ini-
tio calculations are also listed in Table 5. The Cij from the PBEsol
are generally larger than those from the PBE, as expected, due
to the smaller computed lattice constants (see Table 3). There
are, however, some exceptions. For example, the C44 for Mg  and
LaMg2 and C13 for LaMg12 from PBEsol are actually smaller than
corresponding PBE results. Previous results for the Mg  C44 from
PW91 and LDA were 14.2 and 16.1 GPa, respectively [82]. The
PBE results for the cubic La–Mg Cij from VASP electronic ener-
gies are in closer accord with the literature values than are values
from the PBEsol because most studies were performed with func-
tional behaving like PBE. No experimental Cij data could be located
for the La-Mg compounds. Note that La2Mg17 has the highest B
and G polycrystalline moduli of all the La-Mg compounds consid-
ered in Table 5, while LaMg12 has the highest Young’s modulus,
E. The polycrystalline B for the La–Mg compounds are close to
that for Mg,  while the G and E values tend to exceed those of

Mg.

The independent isothermal (CT
ij

) and isentropic (CS
ij
) elastic-

ity tensor components computed from Eqs. (6) and (7) within the
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Table 6
Independent isothermal (CT

ij
) and isentropic (CS

ij
) elasticity tensor components at T = 0, 300, 600 K). Cij at T = 0 K account for the zero-point energy. All moduli in GPa.

Materials T Method C11 C12 C13 C33 C44 C66

Mg 0 57.2 26.9 20.5 62.6 14.9 –
(60.3)  (28.8) (21.7) (66.6) (15.7)

Expa 63.5 25.9 21.7 66.5 18.4 –
Calcb 58.1 27.6 21.6 64.7 14.2 –
Calcc 67.5 24.8 24.1 72.4 24.0

300 CT
ij

53.6 24.6 19.0 58.3 14.0 –
CS

ij
55.0 26.0 20.3 59.6 14.0 –

Expa 59.4 25.6 21.4 61.6 16.4 –
600  CT

ij
47.8 21.0 16.6 51.4 12.7 –

CS
ij

51.0 24.1 19.7 54.5 12.7 –
La  0 49.2 14.8 10.4 51.3 14.9 –

(50.2)  (14.8) (10.2) (51.9) (15.1)
Calcc 51.4 17.3 10.4 54.6 13.9 –

300 CT
ij

48.1 14.5 10.2 50.1 14.6 –
CS

ij
48.3 14.7 10.4 50.3 14.6 –

600 CT
ij

46.8 14.2 10.0 48.8 14.4 –
CS

ij
47.1 14.6 10.3 49.1 14.4 –

LaMg  0 46.2 27.7 – – 36.2 –
(47.4) (28.7) (36.9)

300  CT
ij

45.0 26.6 – – 35.4 –
CS

ij
45.4 27.1 – – 35.4 –

600  CT
ij

43.0 25.0 – – 34.2 –
CS

ij
44.2 26.2 – – 34.2 –

LaMg2 0 46.2 27.7 – – 36.2 –
(58.0)  (25.0) (22.2)

300  CT
ij

56.7 24.4 – – 22.0 –
CS

ij
54.0 23.0 – – 21.8 –

600  CT
ij

54.9 23.9 – – 21.8 –
CS

ij
50.3 21.1 – – 21.4 –

LaMg3 0 57.6 25.6 – – 34.8 –
(59.3) (26.5) (36.6)

300  CT
ij

55.0 24.2 – – 33.5 –
CS

ij
55.9 25.0 – – 33.5 –

600  CT
ij

51.3 22.2 – – 31.7 –
CS

ij
53.0 23.9 – – 31.7 –

La5Mg41 0 71.4 18.1 17.5 74.9 30.0 19.1
(71.7) (16.9) (17.5) (74.8) (28.8) (17.7)

300 CT
ij

67.6 16.8 16.0 71.3 28.9 18.6
CS

ij
68.8 18.0 17.2 72.5 28.9 18.6

600  CT
ij

61.9 14.8 13.8 65.8 27.1 17.8
CS

ij
64.6 17.4 16.5 68.4 27.1 17.8

La2Mg17 0 73.0 21.4 15.1 80.6 26.7 –
(74.7) (21.9) (16.3) (81.3) (25.6)

300  CT
ij

69.7 19.8 13.7 76.8 25.8 –
CS

ij
70.8 20.9 14.8 78.0 25.8 –

600  CT
ij

64.5 17.4 11.6 71.1 24.4 –
CS

ij
66.9 19.8 14.0 73.5 24.4 –

LaMg12 0 84.3 9.4 17.8 67.9 26.4 23.1
(87.1) (10.2) (17.8) (72.1) (26.5) (23.2)

300  CT
ij

79.7 8.0 16.2 63.6 25.5 22.2
CS

ij
81.2 9.5 17.7 65.1 25.5 22.2

600 CT
ij

72.2 5.9 13.7 56.7 24.0 20.7
CS

ij
75.9 9.6 17.5 60.5 24.0 20.7

a Ref. [108] experimental data.
b Ref. [122] VASP/PAW/GGA-PW91 and the strain vs. stress method.
c Ref. [123] VASP/PAW/GGA-PW91 and the strain vs. strain energy method.

Q
m
p
f

i
e
t
h

HA are listed at 0, 300, and 600 K in Table 6 (PBE only) for all
aterials considered in this study. Parenthetical values are the PBE

redictions based upon VASP electronic energies and are taken
rom Table 5. In general, the CT

ij
and the CS

ij
decrease with increas-

S
ng T. In addition, the C
ij
, which account for the faster speed of

lastic waves relative to heat diffusion, are equal to or greater than
heir isothermal counterparts, CT

ij
, at the 300 and 600 K investigated

erein. The notable exception is LaMg2.
6.8. Elastic anisotropy

Crystalline materials very rarely can be characterized by a sin-
gle value of the Young’s modulus as its value depends on the
direction within a crystal lattice in which it is measured. A con-

venient representation of anisotropy is a plot of a Young’s modulus
surface. Fig. 12 shows Young’s modulus surfaces for each of the
six La–Mg compounds computed with the procedure outlined
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Fig. 12. Young’s modulus (GPa) surfaces for (a) LaMg

n Section 5.4.  Each point on a given surface represents the
agnitude of Young’s modulus in the direction of a vector from

he origin to a given point on the surface. In this way, the surfaces
ap  out how the Young’s modulus varies with crystallographic

irection. When the phase is elastically isotropic (or nearly so), the
oung’s modulus surface is spherical (or nearly so). Otherwise, the
urface has a more complicated shape. For example, the surfaces for
a5Mg41 and La2Mg17 in Fig. 12d,e are closer to being spherical in
hat they display fewer facets (or branches). Alternatively, the LaMg
urface in Fig. 12a shows numerous facets and hence this material
s more elastically anisotropic than either La5Mg41 or La2Mg17. The
urfaces of LaMg2, LaMg3 and LaMg12 in Fig. 12b,c,f fall in between
hese two extremes, and hence the elastic anisotropy of these mate-
ials is intermediate to that of LaMg, La5Mg41, and La2Mg17.

The variations of the Young’s moduli (minimum and maxi-
um  values as well as their ratio and standard deviations) for the
a–Mg intermetallic compounds associated with Fig. 12 are listed
n Table 7. If it is assumed that the La–Mg compounds have ran-
omly oriented grains, then the Young modulus can be estimated
y averaging over all possible directions. The average Young’s

able 7
elected PBE results from anisotropy analysis in Section 6.8 (based upon VASP electronic e
Emin, Emax, Eav) and the Poisson ratios (�min, �max, �av) as well as the standard deviations
re  in GPa, the coefficient of variation is in percent (%).

Mg  La LaMg LaMg2

Emin 41.22 38.17 25.73 42.89 

Emax 56.05 46.71 81.78 55.16 

Eav 43.65 41.40 48.93 49.94 

Emax/Emin 1.36 1.22 3.18 1.29 

SD  2.88 1.95 14.49 3.26 

SD/Eav 6.60 4.71 29.61 6.53 

�min 0.243 0.190 0.110 0.245 

�max 0.313 0.253 0.377 0.302 

�av 0.302 0.232 0.266 0.269 

�max/�min 1.29 1.33 3.43 1.23 

SD  0.014 0.016 0.069 0.016 

SD/�av 4.76 7.08 25.99 5.77 

Other  data
� 0.26a

a Ref. [33] Ab-initio, GGA PW91.
b Ref. [29] Ab-initio, GGA PW91.
Mg2, (c) LaMg3, (d) La5Mg41, (e) La2Mg17, (f) LaMg12.

moduli for each La–Mg phase (as included in Table 7) is higher
than that for the pure Mg  crystal (E = 45 GPa), with the highest val-
ues computed for LaMg3 and La2Mg17. Additionally, La2Mg17 is the
most elastically isotropic phase as it has the lowest ratio of maxi-
mum to minimum Young’s moduli (Emax/Emin) and the coefficient
of variation (SD/Eav) where SD is the standard deviation. This may
be one reason why La2Mg17 strengthens the Mg96ZnY2La alloy [1].
LaMg is the most elastically anisotropic phase. Its Young’s modulus
along [111] is more than three times larger than that along [100].

The variations of the Poisson’s ratio (minimum, maximum, aver-
age values, and standard deviations) for the La–Mg intermetallic
compounds are also listed in Table 7. Fig. 13 shows the Poisson’s
ratio surfaces for the La–Mg compounds. Each point on the surface
represents the magnitude of the Poisson ratio in the direction of a
vector from the origin to a given point on the surface. Again, those
materials with surfaces that are spherical (or nearly so) have lower

anisotropy in their Poisson’s ratios. This is quantified by �max/�min
in Table 7. Hence, LaMg is predicted to have the greatest anisotropy
of the Poisson’s ratio while LaMg2 has the least. This is indicated by
the shape of the surfaces in Fig. 13a,b. The surfaces corresponding

nergies). Calculated minimum, maximum and average values of the Young’s moduli
 (SD) and the coefficients of variation (SD/Eav). All moduli and standard deviations

LaMg3 La5Mg41 La2Mg17 LaMg12

42.92 49.18 63.14 60.91
82.71 68.22 75.83 82.28
62.95 61.71 65.51 66.93
1.93 1.39 1.20 1.35
10.59 5.50 2.52 5.05
16.82 8.91 3.85 7.55
0.131 0.186 0.168 0.150
0.309 0.266 0.221 0.241
0.219 0.213 0.211 0.202
2.36 1.43 1.32 1.61
0.047 0.022 0.011 0.020
21.58 11.52 5.13 10.05

0.22b
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Fig. 13. Poisson’s ratio surfaces for (a) LaMg, (b) 

o LaMg3, La5Mg41, La2Mg17, and LaMg12 in Fig. 13c–f lie intermedi-
te to the multi-faceted surface in Fig. 13a  for LaMg, and the nearly
pherical surface for LaMg2 in Fig. 13b.

There is no direct link between elastic properties and plastic
eformation. However, it is generally accepted that the value of
he Poisson’s ratio is correlated with the ductility of crystalline
lloys. [125–127]. According to Cottrell’s criterion [125], a small
oisson’s ratio indicates lower ductility. Therefore, pure Mg  with
he highest averaged value of the Poisson’s ratio is the most ductile

aterial from all considered in Table 7, while La2Mg17 and La5Mg41
re possibly the least ductile.

. Conclusions

The limited comparisons between experimental data and the-
retical predictions for thermal expansion and constant pressure
eat capacity suggest that results from the PBEsol are in closer
ccord with experiment than are the PBE results. The notable
xception is La which requires special treatment of the dhcp �/fcc

 phase transition. A similar observation does apply to lattice con-
tants computed with the QHA. For the elemental metal Mg  the
BEsol, and for La the PBE give lattice constants in closer accord with
xperiments. For the La-Mg compounds, the PBEsol-derived lattice
onstants for LaMg2, LaMg3, La5Mg41, and the lattice parameter a
or La2Mg17 and LaMg12 are closer to corresponding experimental
alues, whereas La-rich LaMg and the c parameters of La2Mg17 and
aMg12 are closer within PBE (it is noted that experimental data are
nly available for CeMg12).

For the cubic La–Mg compounds, the following trends are pre-
icted:

LaMg2
L > ˛LaMg3

L > ˛LaMg
L (a)

Cp(T)LaMg2 ≈ Cp(T)LaMg3 ≈ Cp(T)LaMg (T ≤ 400 K)
Cp(T)LaMg2 > Cp(T)LaMg3 ≈ Cp(T)LaMg (T > 400 K)

(b)
B(T)LaMg2 > B(T)LaMg > B(T)LaMg3 (T ≤ 350 K)
B(T)LaMg > B(T)LaMg2 > B(T)LaMg3 (T > 350 K)

(c)
, (c) LaMg3, (d) La5Mg41, (e) La2Mg17, (f) LaMg12.

For the non-cubic La–Mg compounds, the following trends are
predicted:

(a∗
L)LaMg12 > (a∗

L)La5Mg41 > (a∗
L)La2Mg17 (a){

Cp(T)LaMg12 ≈ Cp(T)La5Mg41 ≈ Cp(T)La2Mg17 (T ≤ 400 K)
Cp(T)LaMg12 > Cp(T)La5Mg41 ≈ Cp(T)La2Mg17 (T > 400 K)

(b)

B(T)La2Mg17 > B(T)La5Mg41 > B(T)LaMg12 (c)

The anisotropic analysis of Young’s modulus and Poisson’s ratio
for the La–Mg compounds gives values that range from 25.73 to
82.71 GPa and 0.11–0.38, respectively. La2Mg17 is the most elasti-
cally isotropic of the 6 La–Mg compounds, while LaMg is the most
elastically anisotropic.

Phase stability and vibrational spectra analyses based upon DFT
suggest that LaMg2 and La5Mg41 are metastable at low tempera-
tures. From the PBE, LaMg2 and La5Mg41 are thermodynamically
stable at temperatures above 233 K and 1285 K, respectively. From
the PBEsol, LaMg2 and La5Mg41 are thermodynamically stable at
temperatures above 634 K and 1200 K, respectively. Experiment
suggests stability for both compounds ∼900 K and hence DFT pre-
dicts the correct trends but is unable to quantitatively predict the
temperatures for stability.
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